Aganović Ibrahim

Preminuli članovi II. Razred za matematičke, fizičke i kemijske znanosti
Aganović Ibrahim

Aganović Ibrahim

Preminuli članovi II. Razred za matematičke, fizičke i kemijske znanosti

Akademske titule:

  • doktor znanosti

Institucije:

  • professor emeritus – Sveučilište u Zagrebu (12.07.2005. – 04.11.2024.)
  • redoviti profesor u miru – Prirodoslovno-matematički fakultet Sveučilišta u Zagrebu

Članstvo u Akademiji:

  • član suradnik – Razred za matematičke, fizičke i kemijske znanosti (18.06.1992. – 04.11.2024.)

Životopis

Ibrahim Aganović, hrvatski matematičar, rodio se u Banja Luci 10. srpnja 1934. Diplomirao (1958.) i doktorirao (1966.) matematiku na Prirodoslovno-matematičkom fakultetu u Zagrebu, gdje je i zaposlen (1959.–2004.), redoviti profesor (od 1979), dekan (1986.–88.), profesor emeritus (od 2005.). Bavi se istraživanjem matematičkih aspekata kvantne teorije polja i rubnim problemima mehanike kontinuuma. Razvio matematički opis makroskopskih modela tankih i kompozitnih struktura. U suradnji s hrvatskim matematičarem Krešimirom Veselićem objavio je udžbenike: Jednadžbe matematičke fizike, 1985., Uvod u analitičku mehaniku, 1990.., Linearne diferencijalne jednadžbe, 1997. i samostalno Uvod u rubne zadaće mehanike kontinuuma, 2003. Umro je u Zagrebu 4. studenog 2024.

Aganović, Ibrahim. Hrvatska enciklopedija, mrežno izdanje. Leksikografski zavod Miroslav Krleža, 2020.


Bibliografija

  1. I. Aganović, Note on the majorization of Feynman diagrams, Nuovo Cimento 36 (1965), 1384 -1385.
  2. I. Aganović, Diagram tecnique in the case of many – particle interaction, Glasnik Mat. Fiz. Astr. 20 (1965), 137 – 144.
  3. I. Aganović, On complex singularities of Feynman diagrams, Nuovo Cimento 45 (1966), 478 – 486.
  4. I. Aganović, Geometric properties of primitive analyticity domains of perturbation theory amplitudes, Radovi JAZU 343 A (1968), 119 -130.
  5. I. Aganović, K. Veselić, Exercises in Theoretical Mechanics (Croatian), Sveučilište u Zagrebu, 1968.
  6. I. Aganović, The method of the minimal surface integrals for the linear elliptic equations of the second order, Glasnik Mat. 5 (1970), 259 – 267.
  7. I. Aganović, H. Kraljević, K. Veselić, Exercises in Theoretical Mechanics (Croatian), 2. ed., Sveučilište u Zagrebu, 1970.
  8. I. Aganović, The method of the minimal surface integrals in the elasticity theory, Glasnik Mat. 6 (1971), 59 – 66.
  9. I. Aganović, Oscillations of an elastic body with the liquid inside, Glasnik Mat. 7 (1972), 119 – 125.
  10. I. Aganović, Oscillations of an elastic body with the liquid inside 2, Glasnik Mat. 8 (1973), 323 – 328.
  11. I. Aganović, Oscillations of an elastic body with cavities partially filled with liquid, Glasnik Mat. 9 (1974), 161 – 171.
  12. I.Aganovic, K. Veselic, On singular contact problem for two – dimensional Laplace equation, Rendiconti di Matematica 11 (1978), 521 – 532.
  13. I. Aganović, An eigenvalue problem of continuum mechanics, Berichte der Mathematisch – Statistischen Sektion im Fotschungszentrum Graz, Bericht Nr. 110 (1979), 1 – 5.
  14. I. Aganović, The Galerkin method for an eigenvalue problem of hydroelasticity, Glasnik Mat. 14 (1979), 387 – 392.
  15. I. Aganović, Integral equations (Croatian), Tehnical Encyclopedia, LZ, Zagreb, 1979.
  16. I. Aganović, On a spectral problem of hydroelasticity, J. de Mécanique 20 (1981), 409 – 414.
  17. I. Aganović, Z. Tutek, One – dimensional approximation of the Lamé equation (German), Berichte der Mathematisch – Statistischen Sektion im Forschungszentrum Graz, Bericht Nr. 154 (1981), 1 – 5.
  18. I. Aganović, Z. Tutek, On the lower – dimensional approximations of the mixed problem for Laplace equation, Glasnik Mat. 20 (1985), 355 – 361.
  19. A. Mikelić, I. Aganović, Homogenization of the Stokes equation under a non – homogenous boundary condition, Berichte der Mathematisch – Statistischen Sektion im Forschungszentrum Graz, Bericht Nr. 251 (1985), 1 – 4.
  20. I. Aganović, K. Veselić, Equations of Mathematical Physics (Croatian), Školska knjiga, Zagreb, 1985.
  21. Z. Tutek, I. Aganović, A justification of the one – dimensional linear model of elastic beam, Math. Meth. Appl. Sci. 8 (1986), 502 – 505.
  22. I. Aganović, K. Veselić, A. Wigner, An Introduction to Partial Differential Equations, Courses 1 – 7 (German), FernUniversität in Hagen, 1987.
  23. A. Mikelić, I. Aganović, Homogenization in a porous media under a nonhomogenous boundary condition, Bollettino U. M. I. (7) 1 – A (1987), 171 – 180.
  24. A. Mikelić, I. Aganović, Homogenization of stationary flow of miscible fluids in a domain with a grained boundary, SIAM J. Math. Anal. 19 (1988), 287 – 294.
  25. I. Aganović, A. Mikelić, On miscible flow in a porous medium, in: Continuum Mechanics and its Applications (eds. G. A. C. Graham and S. K. Malik), Hemisphere, New York, 1989., pp. 569 – 576.
  26. I Aganović, An introduction to finite and boundary elements method 1 (Croatian), Matematika 1 (1989), 49 – 61.
  27. I Aganović, An introduction to finite and boundary elements method 2 (Croatian), Matematika 2 (1989), 37 – 53.
  28. I. Aganović, K. Veselić, An Introduction to Analytical Mechanics (Croatian), Matematički odjel PMF, Zagreb, 1990.
  29. I. Aganović, K. Veselić, A. Wigner, An Introduction to Partial Differential Equations 2, Courses 1 – 4 (German), FernUniversität Hagen, 1992.
  30. I. Aganović, K. Veselić, Linear Differential Equations – An Introduction to Boundary Value Problems (Croatian), Matematički odjel PMF, Zagreb, 1992.
  31. I. Aganović, A. Mikelić, Justification of viscous fluid flow models in porous media, in: Heat and Mass Transfer through Porous Media (ed. M. Quintard), Elseviere, Amsterdam, 1992., pp. 1 – 14.
  32. I. Aganović, Homogenization of small oscillations of heavy inviscid fluid in an open reservoir containing many solid tubes, C. R. Acad. Sci. Paris, t. 314, Serie 1 (1992), 273 – 240.
  33. I. Aganović, A. Mikelić, Homogenization of nonstationary flow of two – constituant mixture through a porous medium, Asympt. Anal. 6 (1992), 173 – 189.
  34. I. Aganović, Homogenization of free boundary oscillation of an inviscid fluid in a porous medium, Math. Modell. Num. Anal. 27 (1993), 65 – 76.
  35. I. Aganović, Note on the model of slightly compressible flow through a porous medium, Bollettino U. M. I. (7) 7 – A (1993), 67 – 76.
  36. I. Aganović, Z. Tutek, Homogenization of micropolar fluid flow through a porous medium, in: Mathematical Modelling of Flow through Porous Media (eds. A. Bourgeat et al), World Scientific, 1995., pp. 3 – 13.
  37. I. Aganović, E. Marušić – Paloka, Z. Tutek, Slightly wrinkled plate, ZAMM 75 (1995) S 1, 137 – 138.
  38. I. Aganović, K. Delinić, Z. Tutek, Homogenization of an elastic medium containing rigidly connected elastic inclusions, ZAMM 75 (1995) S1, 449 – 450.
  39. I. Aganović, K. Veselić, A. Wigner, An Introduction to Partial Differential Equations 2, Courses 5 – 7 (German), FernUniversität Hagen, 1996.
  40. I. Aganović, K. Veselić, Linear Differential Equations – An Introduction to Boundary Value Problems, 2. ed. (Croatian), Element, Zagreb, 1997.
  41. I. Aganović, E. Marušić – Paloka, Z. Tutek, Slightly wrinkled plate, Asympt. Anal. 13 (1996), 1 – 29.
  42. I. Aganović, M. Jurak, E. Marušić – Paloka, Z. Tutek, A model of wrinkled plate, ZAMM 76 (1996) S2, 457 – 458.
  43. I. Aganović, Mathematical analysis of composite structures, Math. Commun. 1 (1996), 139 – 141.
  44. I. Aganović, Z. Tutek, Homogenization of unsteady Stokes flow of micropolar fluid through a porous medium, ZAMM 77 (1997) S2, 505 – 506.
  45. I. Aganović, Z. Tutek, Nonstationary micropolar fluid flow through porous medium, Nonlin. Anal. 30 (1997), 3171 – 3178.
  46. I. Aganović, K. Delinić, Z. Tutek, Homogenization of a spectral problem for a pile foundation structure, Math. Meth. Appl. Sci. 20 (1997), 979 – 988.
  47. I. Aganović, Z. Tutek, K. Veselić, Decoupling of a system of two membranes connected by a thin rigid cylinder, ZAMM 77 (1997) S2, 507 – 508.
  48. I. Aganović, M. Jurak, E. Marušić – Paloka, Z. Tutek, Moderately wrinkled plate, Asympt. Anal. 16 (1998), 273 – 297.
  49. I. Aganović, Z. Tutek, K. Veselić, Approximation of Green’s function and application, Glasnik Mat. 35 (55) (2000), 179 – 190.
  50. I. Aganović, J. Tambača, On the stability of rotating rods and plates, ZAMM 81 (2001), 733 – 742.
  51. I. Aganović, An Introduction to Boundary Value Problems of Continuum Mechanics (Croatian), Element, Zagreb, 2003.
  52. I. Aganović, J. Tambača, Z. Tutek, A note on reduction of dimension for linear elliptic equations, Glasnik Mat. 41 (1) (2006), 77 – 88.
  53. I. Aganović, J. Tambača, Z. Tutek, Derivation and justification of the models of rods and plates from three – dimensional micropolar elasticity, J. of Elasticity 84 (2006), 131 – 152.
  54. I. Aganović, J. Tambača, Z. Tutek, Derivation of the model of elastic curved rods from three – dimensional micropolar elasticity, Ann Univ Ferrara 53 (2007), 109 – 133.
  55. I. Aganović, J. Tambača, Z. Tutek, Derivation and justification of the model of elastic shells from three – dimensional linearized micropolar elasticity, Asympt. Anal. 51 (3,4) (2007), 335 – 361.
  56. I. Aganović, K. Veselić, Mathematical Methods and Models (Croatian), Sveučilište J. J. Strossmayera u Osijeku – Odjel za matematiku, 2014.

Ibrahim Aganović – osobna stranica na PMF-u