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— repeating pattern of
nucleotide bases in DNA sequence
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What are the roles of tandem repeats?

- gene regulation

-changes in chromatin structure

- protein binding sites

- development of the immune system of cells
-repeat analysis in closely related species

- diseases caused by copy number polymorphism
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directly maps the DNA symbolic sequence into the frequency
domain- ,GLOBAL MAP”

uses a complete k-word ensemble (global - local)
parameter - free

identifies repetitions of all lengths

robust to copy deviations from the perfect sample
identifies higher order repeats (HOR)

consensus lengths and sequences are simply determined
from results obtained with GRM

,200d” in combination with BLAST
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B) Complex HOR
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Abstract

Much attention has been devoted to identifying genomic patterns underlying the evolution of the human brain and its
emergent advanced cognitive capabilities, which lie at the heart of differences distinguishing humans from chimpanzees,
our closest living relatives. Here, we identify two particular intragene repeat structures of noncoding human DNA,
spanning as much as a hundred kilobases, that are present in human genome but are absent from the chimpanzee genome
and other nonhuman primates. Using our novel computational method Global Repeat Map, we examine tandem repeat
structure in human and chimpanzee chromosome 1. In human chromosome 1, we find three higher order repeats (HORs),
two of them novel, not reported previously, whereas in chimpanzee chromosome 1, we find only one HOR, a 2mer alphoid
HOR instead of human alphoid 11mer HOR. In human chromosome 1, we identify an HOR based on 39-bp primary repeat
unit, with secondary, tertiary, and quartic repeat units, fully embedded in human hornerin gene, related to regenerating
and psoriatric skin. Such an HOR is not found in chimpanzee chromosome 1. We find a remarkable human 3mer HOR
organization based on the ~1.6-kb primary repeat unit, fully embedded within the neuroblastoma breakpoint family
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genes, which is related to the function of the human brain. Such HORs are not present in chimpanzees. In general, we find
that human-chimpanzee differences are much larger for tandem repeats, in particularly for HORs, than for gene
sequences, This may be of great significance in light of recent studies that are beginning to reveal the large-scale regulatory
architecture of the human genome, in particular the role of noncoding sequences. We hypothesize about the possible
importance of human accelerated HOR patterns as components in the gene expression multilayered regulatory network.

Key words: human brain evolution, chromosome 1, higher order repeats, NBPF genes, human hornerin gene, global repeat
map.
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Schematic illustrating three NBPF 3mer HOR copies based on
the ~1.6-bp monomers in human chromosome 1. (Results
from 2011 -Build 36.3 assembly)
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Schematic illustrating hierarchical structure of 1,410-bp quartic
Intragene Higher Order Repeats in Neuroblastoma HOR.

BreakPoint Family Genes Distinguish Humans from
Chimpanzees
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Abstract

Much attention has been devoted to identifying genomic patterns underlying the evelution of the human brain and its
emergent advanced cognitive capabilities, which lie at the heart of differences distinguishing humans from chimpanzees,
our closest living relatives. Here, we identify two particular intragene repeat structures of noncoding human DNA,
spanning as much as a hundred kilobases, that are present in human genome but are absent from the chimpanzee genome
and other nonhuman primates. Using our novel computational method Global Repeat Map, we examine tandem repeat
structure in human and chimpanzee chromosome 1. In human chromosome 1, we find three higher order repeats (HORs),
two of them novel, not reported previously, whereas in chimpanzee chromosome 1, we find only one HOR, a 2mer alphoid
HOR instead of human alphoid 11mer HOR. In human chromosome 1, we identify an HOR based on 39-bp primary repeat
unit, with secondary, tertiary, and quartic repeat units, fully embedded in human hornerin gene, related to regenerating
and psoriatric skin. Such an HOR is not found in chimpanzee chromosome 1. We find a remarkable human 3mer HOR
organization based on the ~1.6-kb primary repeat unit, fully embedded wichin the neuroblastoma breakpoint family
genes, which is related to the function of the human brain. Such HORs are not present in chimpanzees. In general, we find
that human-chimpanzee differences are much larger for tandem repeats, in particularly for HORs, than for gene
sequences. This may be of great significance in light of recent studies that are beginning to reveal the large-scale regulatory
architecture of the human genome, in particular the role of noncoding sequences. We hypothesize about the possible
importance of human accelerated HOR patterns as components in the gene expression multilayered regulatory network.
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The centromere is important for segregation of chromosomes during cell division in eukaryotes. Its o A ! . X
destabilization results in chromosomal missegregation, aneuploidy, hallmarks of cancers and birth ’ f
* ’ | e X of 33mer HORs

defects. In primate genomes centromeres contain tandem repeats of ~171bp alpha satellite DNA,
commonly organized into higher order repeats (HORs). In spite of crucial importance, satellites have § . . 8 . . .
been understudied because of gaps in sequencing - genomic “black holes”. Bioinformatical studies of $ L J o2, ' 1N four
genomic sequences open possibilities to revolutionize understanding of repetitive DNA datasets. Here, " 5
using robust (Global Repeat Map) algorithm we identified in hg38 sequence of human chromosome 21 b '

complete ensemble of alpha satellite HORs with six long repeat units (>>20 mers), five of them novel. . . acrocentrlc
Novel 33mer HOR has the longest HOR unit identified so far among all somatic chromosomes and novel 120 120

23mer reverse HOR is distant ?ar from the centromere. Also, we disgcovered that for hg38 assembly the . . ChI'OmosomeS .
33mer sequences in chromosomes 21, 13, 14, and 22 are 100% identical but nearby gaps are present; onomer No onomer No
that seems to require an additional more precise sequencing. Chromosome 21 is of significant interest . . . . (a) Chromosome
for deciphering the molecular base of Down syndrome and of aneuploidies in general. Since the T~ N o ° .

chromosome identifier probes are largely based on the detection of higher order alpha satellite repeats, s s 15 8 [ (b)

distinctions between aloha satellite HORs in chromosomes 21 and 13 here identified miaht lead to A )

o = - - chromosome 13;
M. Gluncié, I. Vlahovi¢, V. Paar . Discovery of 33mer in e

chromosome 21 — the largest alpha satellite higher order§i “_- 14: (d)
repeat unit among all human somatic chromosomes. -
Scientific Reports volume 9, Article number: 12629 (2019)

chromosome 22.




NT_011878.9

8
(=]

J Mol Evol (2011) 72:34-55

frequency

6978

QL

4000 6000 8000
fragment length (bp)

NT_011878.9

(=2

NT_087001.4

T 12x171

frequency

45 transformed

| 3T
Skaletsky } } 33‘?4 5779

J.JL”. Ll I.\ |
2000 4000 6000

fragment length (bp)

GAP IN BUILD 37.1

[¢]

NT_087001.1

frequency

104+171

2x171
2244171

04 371

n 11 [ |‘_|__1_ ] i .
500 1000
fragment length (bp)

Schematic presentation of aligned monomer structure of 45mer alphoid HOR (consensus length 7662 bp) in human
chromosome Y (Build 37.1). V. Paar, M. Glundi¢, |. Basar, M.Rosandic, P. Paar, M. Cvitkovi¢. Large Tandem, Higher
Order Repeats and Regularly Dispersed Repeat Units Contribute Substantially to Divergence Between
Human and Chimpanzee Y Chromosomes. 2011, Journal of Molecular Evolution 72(1):34-55




GRM diagram and ideogram for human chromosome /10:246.365 bp
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What are disadvantages of GRM algorithm?

-main: it depends only on
DNA sequences, so
variation in schemas are
due to different
assemblies of genomes
because of tandem repeats
which are very hard to
assemble
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