3rd generation sequencing technologies

Doc. dr. sc. Krešimir Križanović

University of Zagreb

Faculty of Electrical Engineering and Computing

Laboratory for Bioinformatics and Computational Biology (LBCB)

Contents

- History of sequencing
 - First generation technologies
 - Second generation technologies NGS
 - New technologies third generation?
- Pacific Biosciences
- Oxford Nanopore Technologies
- What is on the horizon?

History of sequencing

First generation sequencing

- > 1973 Walter Gilbert and Allan Maxam: "DNA sequencing by chemical degradation"
- > 1977 Frederic Sanger: "DNA sequencing with chain-terminating inhibitors"
- From the computer scientists point of view
 - Read length: from 500-600 to 800-1000 base pairs
 - Error rate: 0,1% accepted standard
 - Higher error rate at the beginning of each read
- From the applicability point of view
 - Speed: slow!
 - Cost: \$2.400 for 1M nucleotide

Human Genome Project

- Officially started in 1990.
- Planned duration 15 years
- Announced complete in 2003. 2 years ahead of schedule
 - In May 2006. the sequence of the last chromosome was published in Nature
- Advances in sequencing technology enabled earlier project completion
 - Applied Biosystems ABI PRISM, technology based on Sanger sequencing, parallel sequencing of a large number of samples
- Estimated project cost \$3 billion (\$5 billion adjusting for inflation)
- Combined sequence of several individuals
 - NOT A PERSONAL GENOME

Next Generation Sequencing - NGS

Pyrosequencing

- Pyrosequencing AB (1999) -> Biotage (2003) -> Qiagen (2008)
- ▶ 454 Life Sciences -> Roche (2007) -> closed 2013
- Ion semiconductor sequencing
 - Ion Torrent Systems (2010)
- Illumina dye sequencing
 - Solexa (1998) -> Illumina (2007)
 - The largest fish in the pond!
- Short reads
- Massively parallel sequencing

Next Generation Sequencing - NGS

From the computer science and applicability point of view:

Technology	Read length	Accuracy	Data throughput	Cost for 1M nucleotides	Error types
lon Torrent	to 600 bp	99,6%	up to 50 Gbp in 2h	\$1	Homopolymer
Pyrosequencing	700 bp	99,9 %	up to 1 Gbp in 24h	\$10	Homopolymer
Illumina (various devices)	50 - 600 bp	99,9 %	up to several Tbp in 24h	\$0,05 - \$0,15	More errors toward read ends

Source: en.wikipedia.org/wiki/DNA_sequencing

Fast, accurate, cheap !

Very short reads !

Cost per Raw Megabase of DNA Sequence

Wetterstrand KA. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP) Available at: <u>www.genome.gov/sequencingcostsdata</u>. 20. listopada 2019.

Wetterstrand KA. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP) Available at: <u>www.genome.gov/sequencingcostsdata</u>. 20. listopada 2019.

What is wrong with short reads?

- Short reads are insufficient for assembling large genomes and genomes with repetitive parts
 - Repetitive Elements May Comprise Over Two-Thirds of the Human Genome (<u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3228813/</u>)
- Short reads are often insufficient to uniquely identify RNA transcripts
- Solution: longer reads, especially reads that completely cover entire repetitive regions and cover entire RNA transcripts
 - Combining long and short reads
 - Long reads for generating draft genome assembly
 - Short reads for higher per-base accuracy

New technologies

- Third generation sequencing technologies or long read sequencing technologies
- Pacific Biosciences (PacBio)
 - Single Molecule Real Time Sequencing SMRT Sequencing
 - > 2011 PacBio RS first commercially available device
 - "Sequencing mainframe"
- Oxford Nanopore Technologies (ONT)
 - Nanopore sequencing
 - > 2015 MinION first commercially available device
 - "Personal sequencing device"

New technologies

From the computer science and applicability point of view:

Technology	Read length	Accuracy	Data throughput	Cost for 1M nucleotides	Error types
PacBio	30.000 bp (N50) Longest read 100.000 bp	87%	around 30 Gbp in 24h	\$0,05 - \$0,08	Random error
ONT	Depends on library preparation Longest read over 2 Mbp	92 - 97%	MinION - 30 Gbp per cell PromethION - 160 Gbp per cell	\$0,1 - \$0,5 (MinION)	Homopolymer

Source: en.wikipedia.org/wiki/DNA_sequencing

Less fast, less accurate i less cheap ?

(Very) long reads!

New technologies

- Third generation sequencing technologies or long read sequencing technologies
- Synthetic long reads combining short read technology with barcoding (or similar procedure) to obtain highly accurate long sequences
 - 10x Genomics Linked-reads technology
 - Illumina Synthetic long reads
 - Complete Genomics Long Fragment Read
- Alternative methods used in combination with sequencing to improve genome assembly
 - Optical mapping
 - Genome wide chromosome conformation capture methods (use NGS)

- Two types of reads
 - Subread "regular read"
 - **Error rate roughly 10%**
 - Read length up to 100 kbp
 - Read of insert special read obtained using Circular Consensus technology, reading a regular reads multiple times dramatically increasing accuracy
 - Error rate below 1% (as the manufacturer claims)
 - Read length 10 20 kbp

- The latest sequencing machine introduced in April 2019.
 - Sequel II
- High accuracy, high throughput, but also a very high initial cost
- Under controlled conditions reads of insert of length 13.5 kbp and consensus accuracy of 99.9% were produced

- In 2013 it was estimated that most of the bacteria and arachaea genomes and be sequenced and completely assembled using solely PacBio long read technology
 - Genome Biology (Sep 13, 2013) "Reducing assembly complexity of microbial genomes with single-molecule sequencing"
- A paper was published in 2013. that demonstrates the use of PacBio devices for transcriptome analysis, completely capturing all isoforms
 - Nature Biotechnology (Oct 13, 2013) "A single-molecule long-read survey of the human transcriptome"

In November 2018. Illumina agreed to purchase Pacific Biosciences for \$1.2 billion! The deal is expected to complete by the end of 2019.

- Initially, two different read types, chemistry version R6
 - > 1D reads regular reads
 - **Error rate up to 30%**!
 - 2D reads increased accuracy is obtained by reading both DNA strands connecting them with a hairpin construct
 - **Error rate up to 10-15%**
- 2016. Chemistry version R9
 - ▶ 1D² reads, reading both strands without physically connecting them
- With improvements in chemistry, current error rate is 5 15%, depending on the sample preparation protocol
- Chemistry version R10 was announced in 2019.
 - Better homopolymer handling
 - Consensus accuracy 99,99%

- MinION
 - Small portable device, connected to a PC through a USB port
 - ▶ Up to 30 Gbp in up to 48h
 - Can sequence for shorter time!
 - Constantly produces results!
- Starting price:
 - Mk1B \$1000
 - Mk1C \$4900
 - Includes an online data processing system

- ► GridION
 - ▶ 5 connected MinIONs
 - ▶ Up to 150 Gbp in 48h

PromethION

- New flowcell
- Yield 100 180 Gbp
- ▶ 48 parallel cells
- Sequencing can last up to 72h
- Theoretical maximum yield around 10Tbp

- SmidgelON
 - Sequencing on a mobile phone
- VolTRAX
 - Automatic sample preparation
- ► Fongle
 - adapter for MinION or GridION X5 that enables direct, real-time DNA or RNA sequencing on smaller, single-use flow cells & delivering up to 1.8 Gb of data.
 - No pipettes!
 - Basecalling on local PC/laptop

- April 2015, MinION was used for real time genomic surveillance of the ongoing Ebola epidemic (<u>http://nature.com/articles/nature16996</u>)
- In July 2016, a MiniON nanopore sequencer was included on the ninth NASA/SpaceX commercial cargo resupply services mission to the International Space Station.
 - Samples prepared on Earth were sequenced
- April 2019. the highest throughput yet: PromethION breaks the 7 Terabase mark
 - ▶ 7.3 Tbp / 81h

What is on the horizon?

- Sequencing the entire range of Earth's biodiversity is not a pipe dream anymore. In fact, it might become tangible reality within the lifetime of the current generation of scientists, Eugene Koonin, NCBI
- Sequencing and assembling complex individual genomes
- Sequencing and assembling diploid and polyploid genomes
- Sequencing and assembling metagenomes (microbiomes)
- Long read technologies will be essential!

What is on the horizon?

- Everybody talks about the \$1,000 genome, but they don't talk about the \$2,000 mapping problem behind the \$1,000 genome," Peter Tonellato, University of Wisconsin
- Sequencing produces extremely large amounts of data that needs to be processed, stored and efficiently searched at later time
 - Already a problem and will only get worse
 - New data storage models
 - New indexing structures
 - New algorithms for fast searching

Questions?

Thank you for your attention!

